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A FUTURE ROLE FOR NUMERICAL AND APPLIED MATHEMATICS

IN MATERIAL SCIENCES

S. ABARBANELz�, S. TSYNKOV�zy, AND E. TURKEL�z

Abstract. In this report, we give a general review of the possible areas, in which the methods of applied

mathematics may be implemented to the bene�t of modern material sciences. In particular, we address the

emerging framework of nano-technologies, and discuss both the issue of modeling, as well as that of solving

(typically by approximate/numerical methods) the mathematical problem as presented by the model. We

also emphasize the crucial role of close collaboration between the mathematicians on one side, and scientists

and engineers on the other side, for the overall success.

Key words. multiple scales, sti�ness, ergodicity, molecular dynamics, rapid evaluation of forces, long-

range and short-range forces, fast multipole expansions, �eld potential, far-�eld boundary conditions, multi-

grid methods, truncation criteria, mathematics-based and physics-based modeling

Subject classi�cation. Applied and Numerical Mathematics

1. Introduction. We present this document to identify areas in which modern material sciences may

bene�t from the application of the methods in numerical and applied mathematics. Some examples include

the branches studying nano-structures and those deriving constitutive equations for novel materials. We

fully recognize the centrality of powerful modern computers, and this underlines much of what we present.

However, the role of numerical analysis, and other analytical mathematical methods, cannot be underesti-

mated.

This document is written by applied mathematicians and so re
ects the way that mathematicians ap-

proach problems. We do not claim su�cient expertise in the physical and chemical foundations of material

science, rather we try to address issues related to the mathematics underlying the existing models. Hence,

we propose to improve the computational e�cacy of the corresponding solution methodologies. We hope

that in certain instances future mathematical analysis will lead to the modi�cation of the models, and to

the development of alternative computational procedures.

As in the previous well-known cases, such as computational 
uid dynamics (CFD), computational acous-

tics, and computational electromagnetics (CEM), mathematicians usually follow in the footsteps of scientists

and engineers that are more familiar with the physical applications. On the other hand, the rigorous way of

looking at things, which characterizes mathematics, often helps scientists and engineers to focus on key issues

that, once resolved, lead to major research breakthroughs. On some occasions, that cannot be predicted, ad-

vances in mathematics truly revolutionize the corresponding applied �eld. This has happened, for example,

in CFD, an area that was changed profoundly following mathematical advances in the theory of conserva-

tion laws. Interactions between mathematicians and scientists in a particular applied �eld may also lead

to adopting some general mathematical techniques that have been well established and successful in other

areas. This has happened, for example, in CEM, with the introduction of the time-domain �nite-di�erence

methods in this �eld, which supplemented the previously used frequency-domain techniques.

�This research was supported by the National Aeronautics and Space Administration while the authors were in residence at

ICASE, NASA Langley Research Center, Hampton, VA 23681-2199.
yNorth Carolina State University, Raleigh, NC 27695
zTel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
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The present document has its roots in informal interactions between applied mathematicians and material

scientists and engineers at ICASE and NASA LaRC. Those interactions, which are still ongoing, include

seminars as well as less formal discussions. It is our hope therefore that this paper will lead to a blueprint

of a multi-year joint research e�ort at ICASE and NASA Langley Research Center. This e�ort should

include residence at ICASE of a group of researchers composed of both numerical/applied mathematicians

and theoretical material scientists working in close collaboration. We clearly realize the importance of

incorporating input from, and providing feedback to, the experimentalists at NASA Langley, and possibly

other laboratories.

Even though at the current stage it is di�cult to predict what areas of material science may bene�t

most from such a collaborative e�ort, we will try to delineate those areas that have two characteristics:

� They are, in our opinion, promising from the scienti�c point of view.

� They are particularly suitable and appropriate for the NASA LaRC material science environment.

2. Resolving the issues related to multiple temporal and spatial scales. It is known that the

existence of multiple, often highly disparate, time scales is a typical situation for complex multi-atom and

multi-molecule models. Di�erent scales usually originate from di�erent mechanisms of interaction between

the particles, and are determined by di�erent types of strain put on the bonds between the particles within

a given ensemble. Stretching typically results in the fastest oscillation, which is followed by bend, torsion,

and �nally motion of non-bonded particles. The performance of a standard explicit numerical integration

routine when applied to the system of ordinary di�erential equations (ODEs) that represents the Newton's

second law and governs the motion of the particles, will be limited by the rate of fastest oscillations. This

leads to very small time steps to avoid numerical instabilities. Small time steps, in turn, imply expensive

computational e�ort and severely limit the overall model time for which the system may be integrated even

on the most advanced modern computer systems during a reasonable (days, weeks, more rarely months)

wallclock time. In typical molecular dynamics (MD) simulations, the aforementioned model time is on

the order of nanoseconds, whereas substantially longer time intervals are often required to make practical

predictions.

This problem has been known for a while and recognized in the literature. In mathematical terms, the

property of having highly disparate time scales, with the fastest one determining the performance of the

solver, is known as sti�ness. It can be conveniently characterized by the condition number of the matrix of

the corresponding system of ODEs. For sti� systems the condition number, which is the ratio of the largest

to the smallest eigenvalue, is large. Eigenvalues characterize the rates, or speeds, of the corresponding

processes.

Most of the approaches that have been tried, to date, to alleviate the e�ect of sti�ness on the compu-

tational performance in MD simulations for nano-materials have a physical origin. These approaches are

equivalent to analyzing di�erent physical mechanisms and the corresponding time scales. This leads to a

subsequent decision to use an approximate, rather than a completely accurate, representation of a particu-

lar mechanism or several mechanisms that are most hampering the performance. For example, the fastest

oscillation can be \frozen". Some of these approaches can be reformulated in mathematical terms, in which

case they reduce to techniques developed in the framework of the numerical analysis of ODEs, which has

its own extensive history of dealing with the issue of sti�ness. However, many other methods for sti� sys-

tems available in numerical analysis of ODEs do not relate directly to the physical origins of the problem,

but are built primarily to take into account the expected properties of the solution rather than its driving

mechanisms.
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In our view, it will be extremely bene�cial if the problem of sti�ness in MD simulations is addressed

by a multidisciplinary team of physicists/chemists/material scientists on one hand, and numerical ana-

lysts/applied mathematicians on the other hand. We hope that this collaboration will fuse the hints provided

by the physics with the mathematical imperatives to create optimal approaches to the issues of sti�ness in

MD simulations.

In the spatial domain, the nano-structure is typically a part of a much larger media. Besides the

properties of the nano-structure one desires to know its impact on the larger structure and conversely, the

impact of the media (surrounding matrix) on the nano-structures. These structures do not behave the same

way in isolation or when embedded in a larger media. Furthermore, the nano-structures are frequently

combined to form larger structures. However, any analysis of such interactions requires one to investigate

many orders of magnitude in scale between the nano-structure and the macro-structure in which it appears.

In the last few years several mathematical tools based on multigrid, multi-resolution, and wavelets have

appeared that allow one to combine phenomena on di�erent space scales. In addition, let us note that the

issue of disparate spatial scales may also arise in the context of far-�eld boundary conditions, see Section 5.

3. Dealing with the problem of non-ergodicity. Many systems of molecules, such as glassy mate-

rials, meta-stable states, and nearly harmonic solids, are not ergodic. Since the computation of time average

quantities is a lot less expensive than the evaluation of ensemble averages, most MD calculations are per-

formed on a single system and extract the required average quantity (say, density) by performing temporal

averaging. The ergodic hypothesis is then invoked to justify the result as being the correct one. The fact

that many systems are in fact non-ergodic means that the time-average quantities computed via the usual

MD simulations are incorrect. It may well behoove us to study carefully, and quantitatively, the e�ects of

non-ergodicity.

Is it possible to de�ne quantitatively (at least for a given system) the extent of deviation from ergodicity?

Can this deviation be correlated, again quantitatively, with the error resulting from using time-averaging?

We feel that this issue would be a worth-while topic of basic research that can be tackled best by a

cross-discipline group as envisioned in this document.

4. Dealing with long-range forces in molecular dynamics. One can describe molecular dynamics

simulations as a way to numerically integrate a large collection of ordinary di�erential equations (ODEs)

that represent the law of motion (Newton's second law) for all the particles that comprise the system under

study. The source terms for these ODEs are forces acting on the particles. These forces typically originate

from interactions between the particles. For a system of N particles such that every particle interacts with

all others, a direct evaluation of forces will require computing O(N2) interactions that are determined by

the properties of individual particles (e.g., electric charges) and by dynamically changing distances between

them. Clearly, the required computational e�ort per force evaluation will scale quadratically with the number

of particles in the system. And because the evaluation of forces is needed on every time step of the numerical

ODE solver, the corresponding computational algorithm will quickly become unacceptably expensive with

the increase of N .

Depending on the type of interaction (i.e., its physical nature), the forces acting between particles can be

classi�ed as either long-range or short-range. For the former, any meaningfully de�ned characteristic length

of interaction will be comparable to the size of the domain of interest, whereas for the latter it will be much

smaller than the domain size. We postpone the discussion on short-range forces till Section 7. Here we focus

on the long-range forces, which are typically of Coulomb nature in the context of molecular dynamics. From

the standpoint of numerical simulation of the motion of the particles, the key property of these forces is
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that they cannot be disregarded even at large distances and therefore, the O(N2) computational complexity

associated with the direct evaluation of long-range forces on every time step becomes a major bottleneck of

the numerical algorithm.

In recent years, an e�cient algorithm has been proposed for calculating forces between interacting

particles at an O(N logN) e�ort rather than O(N2) expense. These algorithm employs special hierarchical

summation rules based on fast multipole expansions for Coulomb-type potentials. This algorithm, however,

has not yet gained a solid ground in molecular dynamics simulations, especially as they apply to studying the

nano-structures. On the other hand, we expect that full-
edged implementations of fast multipole summation

rules in molecular dynamics codes, even though it will undoubtedly be a rather involved task, may provide a

true breakthrough from the standpoint of reducing the execution times; and as such we believe it is certainly

worth the e�ort. Moreover, no matter how far away from one another the following two groups of methods

may seem to be, the mathematics behind the fast multipole algorithms is, in fact, very close to another class

of e�cient numerical techniques known as multigrid. Multigrid methods provide O(N logN) computational

procedures for solving partial di�erential equations on the grid. It is our belief that the similarities between

the two groups of methods are worth exploring thoroughly, since in the context of molecular dynamics these

methods may e�ciently complement one another. Indeed, an alternative, and sometimes preferable, way to

evaluate the forces acting on the particles is to �rst solve the di�erential equation for the �eld potential,

which clearly calls for the application of a multigrid technique.

The ideas resembling one speci�c building block of fast multipole schemes have already been adopted

in many molecular dynamics algorithms, although apparently without direct relation to, and completely

outside of, the fast summation rules content. We refer to the idea of clustering, i.e. treating groups of

particles as one \super-particle" for the purpose of evaluating forces, etc., far away from it. As has already

been mentioned, fast multipole methods use hierarchical systems of such clusters, which allows them to use

e�cient O(N logN) summation rules for the evaluation of the forces. The partitioning of particles into

groups, sub-groups, etc., in fast multipole methods is done formally, based on pure mathematical reasoning.

In contradistinction to this, the clustering that is currently in use in molecular dynamics simulations is based

primarily on physical arguments. However, it does not create hierarchical systems of clusters and so does

not obtain the full bene�t of the fast summation. As such, we believe that the connections between the two

approaches to clustering are worth careful exploration. This has the potential payo� of being able to obtain

on one hand more physics-friendly fast summation schemes and on the other hand, simple improvements to

the existing clustering techniques in molecular dynamics codes by using more mathematical insight.

5. Studying the role of boundary conditions. Numerical simulations in material sciences that

involve nano-scales typically employ periodic boundary conditions at the outer boundaries. Perhaps the most

common computational setup that is introduced primarily for reasons of convenience include a particular

nano-structure or interest surrounded by a region �lled with polymer molecules (the so-called matrix). To

obtain a �nite-dimensional computer model, the system of equations solved inside this region should be

closed, which is done using the periodic boundary conditions. In the molecular dynamics perspective, these

boundary conditions mean that the particles that leave the domain on one of its sides immediately re-enter it

on the opposite side. A key advantage of this approach is its simplicity and self-su�ciency. Often, this is the

only straightforward way to set the external boundary conditions. However, besides limiting the admissible

domain shapes to parallelepipeds and their equivalents of some kind (otherwise, periodic boundary conditions
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cannot be imposed1), setting the periodic boundary conditions at the outer boundary often raises concerns

of a more fundamental nature.

The foremost concern is the in
uence of the treatment of the outer boundary on the results of the

simulation inside the computational domain. Adopting the conventional terminology of \near �eld" (the

nano-structure of interest and the matrix in its immediate vicinity) and \far �eld" (the matrix away from

the nano-structure), we can formulate the question of how the mathematical model and numerical algorithm

used in the far �eld, including the boundary conditions at the external \arti�cial" boundary, a�ect the

computed solution in the near �eld. A related question, which is perhaps as important, is how the numerical

treatment of the far �eld a�ects the overall computational e�cacy of the algorithm.

As shown by di�erent authors (including the authors of the current manuscript) both theoretically and

computationally, the proper treatment of arti�cial boundaries may have a profound impact on the overall

accuracy and performance of numerical algorithms, as well as interpretation of the results, in many areas

of scienti�c computing. It will therefore be natural to expect that molecular dynamics simulations as they

pertain to studying the nano-structures are not exceptional. Consequently, the role and in
uence of the

far-�eld boundary conditions have to be thoroughly investigated in this framework.

As a �rst stage of this investigation, we propose to carefully study the performance of the periodic

boundary conditions, i.e., the current methodology of choice. For a given physical setup, numerical simulation

with periodic boundary conditions will have to be run repeatedly for di�erent locations of the far-�eld

arti�cial boundary (from more remote to closer to the core of the computational domain). Subsequently,

the computed solutions in the near �eld will have to be compared and their accuracy assessed for their

dependency on the proximity of the outer boundary. Finally, one will have to decide how far away in the far

�eld the arti�cial boundary needs to be placed so that the computed solution in the near �eld is essentially

independent of the far �eld boundary. This will determine how expensive the numerical simulation will be.

We expect that the proposed series of computational experiments will be rather demanding in computer

time and memory. It will be crucial to combine the study of the boundary conditions with at least some of

the possible techniques aimed at improving the overall numerical e�ciency, see Sections 2, 4, and 7 of the

current manuscript.

The next stage will be the mathematical and experimental testing of various types of far-�eld arti�-

cial boundary conditions. Again, a universal conclusion reached in the literature is that the accuracy and

overall performance of such numerical techniques are determined primarily by whether or not the bound-

ary conditions are capturing well the e�ects and solution properties in the truncated part of the original

domain. Our experience in building and implementing special classes of highly-accurate local and nonlocal

arti�cial boundary conditions for 
uid 
ows and wave propagation (acoustics and electromagnetics) �rmly

corroborates this conclusion. In the framework of molecular dynamics as it applies to the simulation of

nano-structures, we propose to look into the possibilities of constructing the arti�cial boundary conditions

based on both kinetic (i.e., particle) and macroscopic (i.e., continuous medium) models employed in the far

�eld. This is an extensive and far-reaching goal. In addition, if the approach to evaluating the forces based

on �rst solving a di�erential equation for the potential of the force �eld (see Section 4), is adopted then the

di�erential equation (e.g., the Poisson equation) will also need to be supplemented by arti�cial boundary

conditions. Constructing highly-accurate arti�cial boundary conditions for the Poisson equation is a fairly

well understood issue. These boundary conditions are known to perform particularly well when combined

with a multigrid-based solver in the interior.

1Consider, e.g., the surface of a cylinder | periodic boundary conditions obviously cannot be applied in the radial direction.
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The methods for constructing the arti�cial boundary conditions vary from the more traditional and

simple ones, such as those based on asymptotic approximations and reduced-dimension models in the vicinity

of the arti�cial boundary, to more advanced techniques that require larger e�ort to implement but promise

larger payo�s as well, such as the method of di�erence potentials. Other techniques include boundary

integral equations coupled with the application of the fast summation rules in the spirit of those mentioned

in Section 4. In the case of a macroscopic far-�eld model, the issues related to the transition from the

kinetic description to the continuous medium (the so-called meso-scales) will also have to be identi�ed and

addressed to the appropriate level of detail (see the concluding paragraph of Section 2). This, of course,

will be a separate task. Altogether, based on our previous experience, we expect that the bene�ts from the

advanced treatment of outer boundaries will far outweigh the additional e�ort required for the development

and testing of the corresponding algorithms.

6. Modeling. Usually, by modeling one means the simpli�ed mathematical description of a rather

complex physical or engineering system. Prime examples are, e.g.,

� The analysis of 
utter of a wing with hanging engines is replaced by that of a system of lumped

masses and a simple beam.

� The reduction of the full Navier-Stokes equations to the boundary-layer equations by means of

neglecting the streamwise viscous terms, with the far �eld described by the Euler equations.

� The reduction of the description of an intense explosion to a set of self-similar solutions, achieved

by simplifying the shock jump conditions to their asymptotic values.

In the �rst example, the modeling process is basically physical, i.e., physical, or rather engineering,

considerations change the description of a complex structure to a simple one, albeit one that retains important

characteristics of the original problem. In the other two instances (boundary layers and strong spherical

shock waves) the mathematical description of the original system is known (i.e., via a set of non-linear

partial di�erential equations and the accompanying initial and/or boundary conditions). The modeling in

this case is done by simplifying the mathematics, usually through educated guesses or assumptions concerning

the relative order of magnitudes of di�erent terms in the equations, or in the boundary conditions. Thus

the assumption that the second derivative of the velocity in the direction normal to the solid surface is

much larger that that in the direction tangent to the surface leads one from the Navier-Stokes equation to

the boundary-layer equations. These, in turn, in the steady-state admit self-similar solutions for certain

geometries | something not possible with the original Navier-Stokes equations.

In the case of un-modeled problems, i.e., mathematical descriptions which were rigorously derived from

the appropriate \laws of nature" (e.g., Newton's laws when the physical scales are not too small and the

speeds not too high), one usually does not have to worry about the mathematical validity of the system

| it will be well-posed, and the solutions unique.2 On the other hand, for the aforementioned two types

of modeled systems the mathematical validity cannot be taken for granted. It is the task of the applied

mathematician to ensure that the model retains the essential mathematical, as well as physical, features of

the original system.

Since most problems in material sciences are quite complex, resorting to modeling is natural and appro-

priate. The initial stage of the modeling is probably best done by the material scientist who understands the

physics and chemistry involved. (Although even at that stage it might be e�cacious to involve an applied

mathematician with a proper background. He may help resolve such issues as, for example, what is the

2In most cases, apparent non-uniqueness of such systems is due either to neglecting the second law of thermodynamics, or

to the multiplicity of \steady states," which is removed when the initial conditions are taken into account.
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best way to simplify the description of a nano-tube embedded in a surrounding matrix, or, e.g., can and

should one introduce \matching layers" to mediate between two force �elds?) The contribution of the ap-

plied mathematician will probably be more signi�cant in the second stage | that of trying to solve (usually

by approximate/numerical methods) the mathematical problem as presented by the model. The experience

gained from 
uid mechanics, theory of elasticity, and electro-magnetics may be very useful in dealing with

the new models presented by material science.

7. Sensitivity of MD results to truncation criteria for short-range forces. As has already

been mentioned, MD simulations are computationally expensive. Part of the reason is the sti�ness of the

corresponding ODEs (see Section 2), the other one is related to the calculation of forces acting on all

particles on every time step of the integration algorithm (see Section 4). Those forces are often subdivided

into the long-range and short-range ones. In a system of N mutually interacting particles, a straightforward

calculation of forces obviously results in an algorithm of complexity O(N2). It is convenient to think of

this algorithm as multiplication of the coe�cient matrix of dimension N �N by the N -dimensional position

vector for particles. The aforementioned matrix, which changes dynamically, is full if each particle interacts

with all others. The corresponding O(N2) cost becomes prohibitively expensive for large N 's. A possible

remedy for long-range Coulomb forces is fast multipole summation schemes and/or multigrid type techniques

(Section 4). The approach for short-range forces, e.g., those of Lennard-Jones type, is di�erent. Namely,

only the interactions between a given particle and its immediate neighbors are taken into account, whereas

the forces from the particles that are further away are considered negligible and therefore disregarded.

To implement this idea e�ciently, one needs to be able to determine at every time step, according to

a pre-selected criterion, which particles are \close" to a given one, and which are \far away." To minimize

explicit calculation of distances between all particles, which would result in an O(N2) e�ort anyway, one

may build tracking algorithms based on creating and maintaining lists of close neighbors of all the particles

involved. In this connection we mention that if, instead of considering all interactions, we start considering

only those between the close neighbors, then the aforementioned coe�cient matrix (on the right-hand side

of the governing system of ODEs) instead of being full becomes sparse. The issues related to sparse matrices

still constitute an active research area in numerical linear algebra. Therefore, we expect that e�ciency of

the MD simulations may bene�t considerably from the implementation of the latest and future numerical

algorithms for sparse matrices.

Another very important issue, which impacts on the previous paragraph, is choosing the criterion itself

which de�nes the close neighbors of a given particle. Basically, this is the question of specifying a cut-o�

threshold for the distance, so that interactions with all particles beyond this range can be neglected (because

the forces are short-range). To the best of our knowledge, current practices in MD simulations choose criteria

for cut-o� ranges mostly on ad hoc basis (e.g., the �rst neglected particle exerts only a given fraction of the

force due to the nearest neighbor). This means that in principle we do not know the error due to disregarding

the e�ect of all \far" particles. In our view it will be useful to search for cut-o� criteria (most likely, of

probabilistic nature) that keep the overall error due to neglecting \distant" particles below a prescribed level.

Clearly, the analyses for constrained and unconstrained systems will di�er.

7


